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Abstract

The problem of lateral instability of a viscoelastic in-plane loaded structure is considered

in terms of thermorheologically simple materials. As an example of a generally in-plmae

loaded structure, we examine the simple column under axial load: Both cyclic loading is

considered (with constant o1' in-phase variable temperature excursions) as well as the case

of constant load in the presence of thermal gradients through the thickness of the structure.

The latter case involves a continuous ,novement of the neutral axis from the center to the

colder side and then back to the center.

In both cases, temperature has a very strong effect on the instability evolution, and un-

der in-phase thermal cycling the critical loads are reduced compared to those at constant

temperatures. The primary effect of thermal gradients beyond that of thermally-induced

rate accelerations is occasioned by the generation of an "qnitial imperfection" or %truc-

tural bowing." Because the coefficient of thermal expansion tends to be large for many

polymeric materials, it may be necessary to take special care in lay-up design of composite

structures intended fi_r use under compressive loads in high-temperature applications. Fi-

nally, the implications fl)r the temperature sensitivities of composites to micro-instability

(fiber crimping) are also apparent from the results delineated here.

1. Introduction

Besides fracture, an important structural faihne mode revolves around the evolution of

unstable lateral deformations, often characterized as buckling. When time-dependent ma-

terial behavior is involved, such as associated with polymer-1)ased composites, this behavior

depends strongly on the time history of loading and, even more so. on temperature. While

one can always estimate from the relaxation or creep properties of the material lower-

bound load vahtes below which instabilities never arise [Drozdov], such bounds tend to be

so low from a practical p_fint of view that the designer is forced to use these materials

at load levels a.t which instabilities can evolve eventually, but such that they develop on

a. time scale that is large compared to the anticipated life of the structure. Composites

are typically used in their rigid or (near-)glassy state; it is then of interest to examine

the variation in their response history as one deviates from typical low-temperature design
conditions.

The problem of buclding in visc_clnstic structures has been considered by several authors.

Most of these dam with rcslmnsc under construct axial or in-plane loads. Closely attuned

to the present, objective.. Schaln'ry h;is examined the cyclic loading of viscoelastic columns

under constant temperature. \Ve shall emphasize ill the present study, as did Schapery,



realistically wide time rangesof material responserather than idealizedbehavior. However,
the presenteffort focuseson thederivationof stability criteria aa_dtheeffectof time-varying
temperature cycles.

The large time-rangefor buckling evolutionfollowsfl'om thelargerangeof time-dependence
of polymers, evenwhenthey aremanied to rate-insensitivereinforcementssuchasgraphite
fibers. The "stiffness"of polymersdropsby afactor of 102 to 103 with time or temperature
increaseas the glass-transition telnperature is traversed. Under thesecircumstancesit is
imperative that one appreciate the limitations placed on structures by operation at ele-
vated temperatures. While it isobviously inappropriate to allow the useof thesematerials
uniformly at or abovethe glasstransition, the possibility exists that they are exposedto
temperature gra.dientsin which part of the material experiencesnear-transition temper-
atures, or situations may reis(,when such temperatures are accidentally approachedor
exceeded.

\¥ith this motivation in mind weexaminecolnmnspossessingthermorheologically simple
material behavior subjected to two kinds of (axial) loading and thermal exposure: We
consider first the caseof a cyclically loaded colmnn under constant as well as cyclically
varying temperature, the latter being in phasewith the loading. This problem will be first
consideredfor the idealizedmaterial of a.standard linear solid to establish certain limit
behaviors. This simplified-nm.terialand exact analysis is then followed by a numerical
evaluation involving realistically wide-spectrum time responsefollowing the behavior of
polymethyhnethacryla.te (PMhIA) as a model material. Along the length of the column
the temperature distribution is l_resumedconstant for all problemsconsideredhere.

The next problem concernsthe effect of a.thermal gradient acrossthe thicknessof the
structure. Mimicking stea.dy-sta.tethermal conditions we consideronly a linear temper-
ature variation a.crossthe cohmm (although a different distribution posesno additional
difficulty in principle). The consequenceof this thermal variation is that with time the
material exhibits varying "stiffness" acrossthc, structure, since higher temperatures are
associatedwith faster relaxation or creep, so that the neutral axis (surface)wandersas
time progresses:While beingh_ca.t.edinitially and also after infinite time at the center, it
is subject to a.nintemledia.te¢,xcursiontowards t.l_ecold side.

Problerns of time-dependentbuckling instability in the a.bsenceof temperature gradients
have been consideredby other authors. We believe that a fair review of the state of
the art in this respect is presentedin the referencesby Glockner and Szyszkowski(1987)
and Minahen and I{nauss (1992). For our present purposes it sufficesto state that in
the context of the time-dependent,non-dynamic evolution of instabilities, the criterion
as to when unsafecondit.ionshavebeen achievednmst be establishedthrough empirical
argurnents; in this regard w(,f',,lhm,Minahen and I(nauss (1992) and usethe achievement
of a predetermined lat(,ri_ld('fl('ct.ion",_st.h('clit_'ri(>nfl:_rfailure. Also, in view of the results



in this latter reference,namely that considerationsof kinematically large deformations
yield virtually identical results asthe completely linearized analysis,we restrict ourselves
here also to linear kinematics and material response.

2. General Formulation

Following developments in Minahen and ICnauss (1992) we consider an initially (slightly)

deformed colunm, a.s shown in figure 1, of in-plane thickness h and unit out-of-plane

thickness. In anticipation of dea.ling with thermal gradients through the thickness and

the associated motion of the neutral axis, we designate that position with respect to the

center-line as n(t). Let u0 (a,. t) denote the axial motion of the center-line, o_= the (constant)

coefficient of linear thermal expansion, and T(:. t) the temperature variation. The strain
is then

O..0 . 02
<.(-,_) = -gT(z)- [- _ ,,(¢)].--.: Ox 2 + a_T(z) (1)

along with the st.ress-st.rain rda.tion

where

' t' (, 0a.(:,t)= -o_E(z"- )_-_e_(z,()d( (2)

t'- ('= iF' deo[r(-4)] (3)

is tile reduced time (difference) based Ol] the time-temperature shift factor ¢(T). Moment

equilibrium then provides the integro-differential eqtmtion

I1

/,[=-,,(t)]
h
"_ :X.

{0,,0 0 -w}E(z,t'- (')_-_ -_.r(() -[: -n(()]O--_r2 d(dz (4)

: P [,,.(x,_) + w0(x) + _(_)]

with Wo(a:) and to(a:, t) denoting, resl)ectively , the small initial imperfection (when needed)

and the additional time-dependent lateral deflection as illustrated in figure 1. After ex-

pa.nding w0 (.v) and u,(x, t) illt._ the Fourier selie_

,,(.r.t)= _.4,,.t)sinm"'r --7-- (5)
I;_ : ]

an d

.'o(a:) = _ B,,, sin _r,.l" -7- (6)
/_l=l

two equations result, one governing the loca.ti(m of the neutral axis

h

,, [:-,,(t)] E(- t'- (')-_ [-0_7.r(._) d_dz = P,_(t) (7)
• ":7 '



and the other representing moment equilibrium

- - {[_-- .(()]A(¢)} d dz = P [A(t) + B] (8)
2 oo

where, in anticipation of dealing only with tile fundamental mode (m = 1) [see Minahen

and Knauss (1992)], the subscripts rT) have been dropped. I Because the two problems

to be considered subsequently need a somewhat different use of the last two equations, we

shall deal with their applicati(ms in the specific c(mt.exts.

3. Cyclic Loading

Before dealing with a. material possessing realistic time response, we consider first the

case of the standard linear solid with the intention of characterizing the typical aspects

of the problexn and to allow for an evaluation of the nulnerical scheme applied later to

the situation with more realistic properties. Colnputational solutions require compromises

in the discretization (ff the integratiou s() that a, check on the reliability of the scheme is

at least desirable, if n()t ma.udat(:,ry, in light <)f (,arlier experience in Minahen and Knauss

(1992). We choose a "'square wa.ve" loading history because it approximates typical use

conditions better than a. sinusoidal history, but also with the expectation that a piece-wise

sequential solution is possible. The results obtained in the sequel for equal on/off times

are readily generalized for unequal on/off ratios with square wave loading. The thermal

excursions are of the stone type so that a rise in load is accompanied by a rise in temperature

and unloading is accompanied by a drop in temperature without considerations of thermal

delay transients (c.f. figure 2). In fact, it turns out that any piecewise-constant load

history can be dealt with using the procedure developed below, such that the effects of

loading functions with multiple load levels ()r discretized approximations of load histories

which do not resemble square waves can l)e ol)t_,ined with only slightly more effort.

3.1.1 Sta.ndard linear solid; isothermal ca.qe

Because in the present case the telnperature is unifimn throughout the geometry, the

neutral axis remains at. the center-line or midsurface (n _= 0). Equation (7) is thus satisfied

identically and, after norlnalizations in the form of

P(t)
p( t ) -_-

P,(o)
P, t_=_

E(t)

E(O)

.4(t) B
- J - (9)

h h

1 It was shown in the work of Minahen and I(nauss that, generally, of all the possible

deformation modes the first (me grows significantly faster than the higher ones. For this
reason the first mode will dolninate tlw defl)rmati()n ov()lution.



the moment equation (8) reduces to

,'(t')a,(O + ) + ,'(t' - (') d( = p(t)[o,(t) + fl] (10)
+

For the standard linear solid, the relaxation behavior is characterized by

E(,:x>)

r(t) = r_ +'rle-'X_; r_ = E(0-----_ 7"1 = 1 - %0. (11)

We effect a solution of (10) fi:)r a loading-unh)ading-h)ading cycle to show by induction that

a sequential or recursive solution may be obtained. First integrate (101 across the load

jump at t = 0 to obtain

a.(0 +) _ po,d (12)
1 - P0

and then establish the lateral cohmm motion raider time-invaviant axial loading. This

result was given in Minahen and I(nauss (1992) for anv load level P0 as shown in figure 3,

which is valid for the first loading portion, with the explicit form for this function being

given, for arbitrarily long pulse duration t. by

a'tj(t) = Cle-" + C'2 (13)

where

6'1 _ cI(O -I- ) nt- POfl [d -- --A p° -- r,_ C2 =- Pofl (14)
p. - r_' 1 - Po Po - r_"

V_Zeshall refer hereafter to (13) as the deflectiou timction. Integrating (10) also across the

unloading jump at t = tt) yields the corresponding defl_'ction decrease

= ;:q. (15)

To obtain the deflection for the tmloaded p(wthm of the cycle we let.

p(t) = po[hCt)- h(t - t0)] (16)

in (10), and deduce, with the aid of Laplace t.rallsfornmtion and some tedious algebra, that

during the time to < t < 2t0 the lateral midspan deflection is

c_,,tj(t) = C':_e-'-_'xl (17)

with

• Cl rl ,\ ' ,-_, ,_-t* It0
C:_--p,,[(C,-I-4) r' (e'"_A'°-l)+ (1-e - )]. (18)

I'_, t t - _'_,\

One follows the sarne procedure for the time interval 9t 0 < _. < 3t 0 and determines that

during this second loading cycle.

c_.r2(t) = C.le-" + C._, (19)
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where

C4 =oe + 1-,',_, (l_e,,,o +e2,,,o) + Ca [e(,_,. X),o _e20,_,. X),o] (20)
P0 - _'oo 1 - P0

# and (3'2 are the same as in (14), and Ca is defined in (18). Comparison with (13) shows

that this response can be determined flom the deflection under step-loading in equation

(13) through a "time shift" of the form

ar_,(t) = C'te -pl_-tl + C'2, i = 1 In C'4 (21)
t z C1

which observatiol_ is also illustra.ted in figure 4. Beca.use further stepwise integration be-

comes very cumbersorne even for this simple material problem, we deduce by induction

that a sequence for further load cycles may be c.onstructed through successive determina-

tion of the (glassy) jumps at. the loading and unloading times plus segments of the loading

and unloading functions, (13} and (17) respectively, such that their magnitudes match the

values at the beginnings or ends of t.he load cycles. 2 In this sense, these two curves

become "master curves" for the def(nmation dming the loaded and unloaded portions of

the cycles.

3.1.2 Long-term stability

This terln-by-ternl construction of the soluticm beconles tedious and because we are inter-

ested only in the maxinmm deflection a.t the end of each cycle we are satisfied with tracing

the history of that particular parameter. To this end. we consider the accumulation of

the deflection over a postulated load cycle by considering the jumps at the loading and

unloading time 7_to and (_ + 1 )t., as well as the change during the respective time intervals.

Starting with the deflection at the end (da lo;_ding cycle, a(7_t o). we find the subsequent

(downward) jump

,,(,,t_) = .{,,_.;) - _,0[_(,,_,.) + ::_1 (22)

the displa.cemellt at the end ()f the unloaded interval

_[(,, + 1)_o]= o'(,,tG)e-'_ ;''° (23)

the (upward) jul-np at the onset of a new loadillg interval

,,[{,, + ] }_.+]= -[{,, + 1W] +
_,o[,,[(,,+ ])*o} +.3]

1 ....

(24)

2 This responso history has also 1)een COlnl)uted munericallv for comparison purposes

and as a check on the algorithm used later. With 100 or 1000 time steps per cycle it was

found that over the dm'ation (,f 40 cycles the differences amounted to no more than 0.1%.

The same result prevailed foe cycles 1)ossessing flacti(ms of the loading/unloading cycle

tha.t differed fi'om the 50/50 example illustxated here.



and the displacenaenta.t the end of the next hn:lding interval

_.[(,, + 2)q] : [_.[(,,+ 1),g] -C:]e -'''o + c'_. (25)

By combining (22) through (25)one finds

.-x(,c,.c,¢.- a.[(,_+ _)_,.] - -i,-,_,7) (26)$

and therefore

Ao:o.d_ = [e -_':_:'+'')'° - 1]a.(,_t_7) + a(0+ )(1 --e -'_ a'° e -''''_ +6'2(1 --e -''t°) (27)

recalling that a(0+) is given l_v (_(luati(m (12).

It is apparent that the charm'rcr (_fthe accumulated deflections is determined by the term

multiplying a( 7_t_- ). If this term is negative, successive deflection increments decrease with

time so that the total deflection tends asymptotically to an upper limit. It is negative if

(rooA + #) > 0 which, with (14), indicates stability if

2FOO

po < p_,.- (28)
l+r_

in which case the maximum deflection is asyml_tc,tic (i.e.. Aca'_}d_ = 0) to

a(0 + )(1 - e -'-_'\'° )e -;''° -i-.C2(1 - e -;'t°)
a,,,._(_c.) = 1 - (,-(,'-_._+t,_to (29)

It is clear that if p >_ 1)_, a bounded displacement is not achieved as t --+ oo; in fact, if

p = pc,., the displacement alnlflitude diverges linearly with t.ime or number of cycles, while

it grows exponentially if p > Pc,.- Illustrations of these three distinct cases are given in

figures 5-7. For the>e examples the standard linear solid model used is

,.(*) = 0.5(1 + ,-i,/r."_,,h,.., ). (30)

S



3.1.3 Stanclard linear solid; in-l)hase thermal cycling

Because of the piecewise construction of the s()lution, the extension to thermal variations

is simple, whether that variation is in-phase c>r out-of-phase. The situation for thermal

cycling which is phase-shifted with respect to the loading by a fixed amount is only slightly

more complicated than the case presented here. while the case of thermal cycling with a

different frequency than the', load cycle (loes nc)t seem to lend itself to any other than a

completely numerical solution. Froln an ellgilleering point of view, the (approximately)

synchronous load and temperature varia.tion lm'_ents the :uost relevant problem and is the

only one considered here.

We assume that for this simple materia.l model, a t.ime-tenq)era.ture superposition behavior

such as indicated in figure S applies, the two shift factor_ corresponding to the two tem-

peratures T1 and T_ being ¢1 = q_(T1 ) and e2 = o(_ ). Tl:e analysis follows identical lines

of reasoning as before, except that t is replaced by the appropriate tiC. Thus equations

(13) and (17)become. respectively

_vll(l) = Cle -_"/°')_ + C'._> (31)

a12 d

a'.n(t) = + - 1)+
_)1 I'! ,\

(I - ,'_"'_ A-""° )]e-(_" _/¢')' (32)

\¥e address first the question of stablc/ullstal)l(, deflection growth in the presence of these

temperature variatiolls. Following the same rcasc,ning as :hat which led to equations (27)

and (28) one finds that (27) is replaced by

ACa, cycle = [e-C,..=.=.A/o_+p/ol )t)

froln which (28) bec()mes

- 1]c_( ,_t_7 )+ _ (()+)( 1 -e -'_ .',.':/e,_, )e-,,0/,/,, q- C2(1 --e -"t°1¢1 )

(33)

I'._.(1 + o.:)
0 I

p,:,.(T) - (34)
o "....A

01 -_- ! "':X2

For constant t.eml)erature, equati(:m (28) is recovered. We aote that for the thermal varia-

tions considered here typically oi/,&.__ _> 1 (and 1:¢ << 1 ): as a. consequence one has, with
) *p_,. given by (28), that 1 _,'/P_,. -< 1: with the ianl)lication that a load level which renders

stable long-term deformations can lead to unstal)le growth in the presence of thermal cy-

cling. An example of this sit.u_ti_m is demcmStl'atcd in figl::e 9; here, the load level for the

isothermal case illustl'at(,d in t-i.gure 5 t'cn' the cXaml)le of _tal)le deformation growth now

causes unstal)le growth a.s tit(' t('ml>eraturc excursi(ms are added. It is important to recog-

nize, however, t.hnt it is tlu, cyclic nature of lh(' tcmperatu:'e va,riations that is responsible

for this unstabh:' l)eh,vi()r an(l n_)t merely a unif()rnl ,:ha:zge of the temperature: In the

latter case, one wcmhl lnel('lv vtti'ct an acceleration of the time scale by which the defor-

ma.tion is achieved. The unst.al)h' bcha.vi(n in the case:, ()f _he cyclic temperature variation

9



results fl'om the fa.ctthat during the loading portion of the cyclewhen the temperature is
higher, deformationsgrow to a.hu'gerextent than they recoverduring the unloadedportion
when the temperature is low a.ndwhen t.hecreepresponseis retarded.

3.1.4 Long-term st.ability conditions raider various load and thermal behavior

As T_/Tg_ inc,'eases, or/q)2 decreases and, upon examining (34), we find that p_ ap-

proaches too. This can be interpreted a.s the deflection increasing rapidly during the high-

temperature loaded portions _t' t.he cycle but recovering little during the lower-temperature

unloading segments. If the reco\'¢'ry I)Ccolnes negligible, the case of no recovery is ap-

proached (i.e. time-invaria.llt loading), so tha.t stability is determined by the generally very

low rubbery buckling load corresponding to r_. On the other hand, as T1/T2 decreases,

p_,. approaches unify: The ret.arded deflection during low-teml)erature loadings is recov-

ered at an accelerated rate du,ing mfloading such that deformation does not accumulate,

and only a load equal tc} the glassy buckling load. i.e.. p = 1. can cause unstable deflection.

We include here also the results fl:,r the case where the loading and unloading portions of

a. cycle are of different durations tl and t._,

r._o( 1 -r- _ o_ )
12 OI

p_*,:(T) = (35)
h- °" + t'_
I'.2 0 I

For constant t.emperature (0_ = 0_) and equal loading and unloading durations (tl = tz),

equation (28) is recovered. Similar to equa.ti(nl (34), limits as tl/t__ approach infinity

or zero give va.lues of p,*.,t equal to Io_. and unity, respectively, which is interpreted as

representing cases of non-recc,vering, cc,ntintunts loading and periodic impulsive loadings

(under exclusion ()I material inertia.).

3.2 1-{ealist.ic material ro.*l)r)nsc ilh_stratccl In PAI)IA

Ha.ring dea.lt wit.h the standard linear sc_lid, primarily to est.ablish the long-term stability

boundary fl)r the thermal cycling sit_mti¢,n u'_, turn to consideration of the counterpart

problem but fin a material with a realisticalh wide spectral distribution of relaxation

times. As in hfinahen &: I(nauss (1992) we mnploy the relaxation characteristics of poly-

nmthyhnethaclyla.te (PMMA) as an exemplary material, though newer high-temperature

materials will ce,'tamlv 1)_)ssess more al_prc>priate capabilities. However. we employ the

properties of PMMA I)ecmlse these ln(_l)crties, including the time-temperature trade-off in

the glassy and n(,ar-._lassy d(mmins, at',' well l{nmvn; the same cannot be said about most

o," all of the p(flym,,rs typically used in th(, ntanufactme of composite materials. Although

PMMA is an uncr(,sslink(,d l_c_lym('r and as such does not offer a long-term equilibrium

modulus, we associat(' such a limit with th(' ('ntanglem('nt plateau. It is not the purpose of

10



this section to simply dul)lica.tetile earlier analysisfor a different material, but to examine
whether representationscan 1)eextracted from such a.nexercisethat provides guidance
for understanding qualitatively, a.ndon a.nmr¢"realistic time-scale,the effectwhich cyclic
loading can haveon a thermoviscoelasticstructure under constant and synchronouscycli-
cal heating. In particular, weshall be interest_-'din examining how the cyclic problem can
be compared to that employing constant load as a reference,since the latter is readily
computed approximately for realistic material behavior.

We use the relaxation moduhls shownin figure 10 which representsthe combined mea-
surements by Lu (1992) mid McLoughlin and Tobolsky (1952) except that we eliminate
the very long-term fl_m-regime'and replace it I)y "rubbery" equilibrium behavior. 3 We

recognize that this relaxation behavior is uot precisely that of thermoplastic-matrix com-

posites applications but we believe it t(_ 1)e rel)rc-sentative if we do not limit ourselves to

fiber-dominated lay-up (.cmfigurations: in any case, this statement appears to us reason-

able because wc_ shall pr_.scnt all (la.ta and intcrln(:ta.tions normalized by the short-time or

glassy modulus. The-' g,_verning integral e(lUa.ticm (3) is evaluated numerically.

\¥hile we shall thus sub._titute for the relaxati(nl or creep characteristics of a composite

solid that of PMhIA. with m_difications a.s discussed above, it is imprudent to assess

the behavior of carlmn-r('infl,rc(*d 1)olym('rs using the thermal expansion characteristics

of PMMA. The reason is that th(-' c_mKicient c,f thermal expansion of PMMA is about

two orders of magnitu&'s larg_'r tha.n that. (,f typical fibc,r-reinforced materials in the fiber

direction, though, tran,v('rs(' t_, the b_tt,'r, the' ,.xpansion may also be large by comparison

[see e.g., Schapery ( 1991/]. In _nder to deduce c_ngineering-relevant information from these

computations it is therefore reasonable to ch_ose an appropriately small coefficient of

axial thermal expansicm and use, therefore, th__ "'text value" of a,, = 3 x 10-_/°C [Tsai

and Hahn].

A remark is in order cm the' critc'rion used t_ establish failure by buckling. Following

Minahen and I,:nauss (1992). we use the at.taimnent _f a chosen deflection a.s the failure

criterion. The time tc_ f_ihu'_' is then the, tim_' t_ reach this deflection under any loading

conditions. For dem(ntsrrati\-c purpc_.-_'s, we may think of such a value as two or three

multiples of the cohmm rhicknc'ss: w_, use, a f_l¢'tor of 2.4 in this presentation.

Before turning to a COml)_Lrisc,n of tlw _,fl_'ct of a thermal gradient on the time scale of

fa.ilure, we illustrate first four cases of c_,hmm deflection history under cyclic loading for

'_realistic _' material lnOp_rti(_s, namely subcrirical, critical, and supercritical behavior, as

well as a case fcn llc,W the' sul)critical cas_, Cml l_ccome supercritical (unstable) if ther-

ma.1 cycling acc(_ml)a:li,'_ l:m<ling. Th_'s_' sit.m,tic>ns al'<' illustrated in figure 11 where the

a For comlmta.ti_m_l lmrl)_sc. _ w¢' rcl_rt's('nr the' relaxat.i(n_ function 1)3' a series of expo-

nentials (Prony-Dirichl_'t s(,ri('._) of 30 t,'rms.
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shadeda.reabetweeneachtwo curves representsthe rangeof deformationsas the column
midpoint displacemel_t,increasesunder cyclic loading. The fourth figure in this group
applies to the caseof a loa.dwhich, in the constant temperature case,is subcritical but
which becomessupercritical when the temperature accompanyingthe load cycle increases
load-synchrononslyby 10°C,similar to figure 9 fi:_rthe standard linear solid. We note first
that for material beha.viorwith a largerangeof relaxation times it is no longer reasonably
possible to computationally establish whether the deflection tends toward a limit value
for very long (infinite) times. At best oneobservesthat for supercritical loading the rate
of growth increaseswith time, while for the critical and subcritical loading the converse
seemsto hold. This behavior follows fl'om the previously developedlong-term stability
boundarieswhich arealso valid for a.material with realistic relaxation behavior.

It is apparent that under isothermal conditi(ms any cyclic loading with maximal load
amplitude p0 will lead t() failure after longer times than for the case when the same load

p0 acts invariantly with time: in fa.ct, the smm' load which leads to eventual failure when

constant may result in a long-term stable deflection when applied cyclically. On the other

hand, it is of interest to examine the rehaive behavior between the two cases when the

load in each case is normalized by its resl)ective long-term stability boundary in such a

way that the resl)ective loads are related by

pc,-J _o,,._, [p_,. J ,_.,j, '

because this c(mll)aris(m relates synchronous thermal and cyclic loadings to isothermal,

time-inva.riant loads, th,., latter being readily _,stimat)le. As shown in figures 12-14, a very

close agreement between the two responses is apparent. This result indicates that, while

the realistic material response to cyclic loading may be analytically difficult and compu-

rationally time-consuming, the lnore-easily computed constant-load case can be used, by

employing the above equivalence relation, t()_,valua.te Icing-term behavior. It is worth not-

ing tha.t this equivalence cmmot be used irl cc)mparing time-invariant and cyclic behavior

in the case of the standard linear solid. Figures 15-17 clearly reveal this lack of corre-

spondence. Although in the critical lcmding case the constant-load deflection follows the

average deflection trader cyclic lore(I, the other t.wo cases show divergence. The lack of a

realistic range of relaxaticm times does not allow the above-determined equivalence to be

applied for the siml)lc material model [Schapcr.v (1962)].

4. Effect of a Thermal Gradient

We next consider a c()lumn loaded axially at the center-line by a step load of magnitude

P but in the prcsclWC {)f a transverse th(,rmnl gradient. Along the length of the column

the temp(,ratur(' (list.rilmti(m is invm'iant. F_n these ccmsi(lerations we do not include an

intrinsic initial imln'rfcct.i(m, l)c,'ausc the" th,'rnml gradient induces a lateral, stress-free

deflection, which we ,lcsiKnate I)v l_,_(._'). ('_)nsidcr t.lw coehCicient of thermal expansion a

tO ])e a. C()llStllllt. ill t.hc tCntl)Ct'at.nrc r'ang(' ()f int.crest.
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Because of the thermoviscoelastic materia.1 beha.vior and the thermal gradient the effective

properties vary across the t,hickness so tha.t the neutral axis, located a distance n(t) from

the center-line, moves with time a.s dictated 1)y (7) and is determined (numerically) by

h

?

,,(t) = ,, (37)
+.[],_, " - cl dz-

9 "2

However, it is first necessary to find Ouo/Ox.

Considering the purely axial compression of the column, force equilibrium requires

./_ eL,.( - t)d.4 = P (38)

or

Discretization of this equation allows determination of 0u0/0x by iteration and via the

Newton-12aphson method. Once 0u0/0x is known, one soh'es (37) for n(t). Finally, know-

ing n.(t), one solves (S) for t.ho displacement .4(t) by discretization and the Newton-Raphson
method.

For the case of a tlaU.svcr.sclv linear _empcratm'e gradient,

Y(=-) = (,=- + b (40)

and employing the Prony-Diri('hlct series rel)rcscnt.ation

E(t) : E_ + E Ed"-'\"' (41)
I,'=1

a.long with the t.ime-t(-unl)craturc snpcrl)_,sit, ion t'a('tt)r o(T). the relaxation modulus be-

comes, %r any value <_i".:.

01"

\,

E( t)= E_. + _ E,.e ,'_' (42)
/,'=1

E(.:._') = E E,_.c-_' (43)
/, = II
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where t3oo is the 0tl'-order coefficient. At t = 0 +, we define

8

E 9 =E(:,O +)=E_+_Ek. (44)
;,':l

4.1 Analytical preliminarie.s

The thermal gradient introduces a.n initial curvature which can be computed as for an

elastic solid if one assumes that. the coefficients of therrnal expansion are time-insensitive,

The analysis follows essentialh' that outlined in Timoshenko and Goodier (1987) and details

are also presented in [Tsuyuki and I(nauss (1992)]. The result of that analysis is, with

coordinate definit.ion as given in figm'c 18,

Express w0 in a Fourier series

mTr:r (46),,,,,(:_')= _ B,,, sin ---7--
IH_]

so that

And thus

or, more generally.

B,,, = -7. _.,,o :,.- - sin ---7-- d.z" (47)

{_ if' m odd:B,,, = (,,,_F (48)
0 if m even .

4(t .,.(,I2

B1 -- 7r,3 (49)

13,,,_ (5o)
III 3

Thus a. one-ternl al)pr_ximati_,t_ with B_ ahm,. is not umeasonable for present purposes.

In fact, in view of [Sechlcr] this ('h_ficc w_mld r_'nder the estimates of instability occurrence
conservative.

In conformity with tim st_,p loading cnu:, fillds [frorll (39)] that, immediately after load

application (t = 0 + ).
h

/] 0,,,,+, E,,-_.r (0)d.: = P (51)
• ---:j
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or

Ouo + 1 P
_0= -_-.T(o)- (52).: Eg h

a.nd similarly for (7) and (8) that

.(, = n(0 + ) = 0 (53)

a,n d
B

A(0+)= u,,l ,_--, (54)
,(7) - 11--5-

For the case that the cohmm reaches a. stable equilibrium at large times, one determines

the long-term result by ()bserving t.ha.t E(z, t) --+ E._. as t + oo. Then (39) becomes

E_ _ L77, < d: = P
• - * _C

(55)

or

Similarly, (37) leads t<)

Ou.o 1 Pcoo= Ox - Eo_ h (56)

,_- i_(,x) = 0

and finally, (8) gives the complement, t.o (54) _,>

(57)

B
., (58)

.4(oc)= r.'-/ l (_)- _ 1

We next evaluate the stal)ility regimes of tit(, c()lumn, following Minahen and Knauss

(1992). W'e rewrite (56) and (58) a.s

PB pO = E_I (59)A(0 +) - 0 " _,
P_. - p

and

PB _. (_._2 (60)
_4(,_)- • P,:, =_ E_ I \ I /p_.,_ - p - •

P_,. and P_ a.re the Euh'r lmckling loads lms_,d (m the instantaneous (glmssv) and long-term

(rubbery) moduli, respectively, a.nd if P a.ppr_mdles these values, the glassy and long-term

responses, respectiwdy, Iwc<mlc unbounded. This establishes three sta.bility regimes. If the

load is less than P,_ (60). the deftecticnl m'entualh" tends to the value given by (58). If the

load exceeds P_',. (59). the (()hunn I)uckh,s inst,nran(,(msh. If the load level falls between

15



these limits, the deflection growsgradually in an unbotmded manner. This is illustrated
in figure 18, where the colunm responseof a load at 1% below p o_ is illustrated; the

"supercritical" load is one percent above that critical load.

4.2 Time-dependent thihu'e .... design life

Once the cohunn has (we assume inst.antly) attained the initial imperfection given by

equations 46 and 48, the sul)sequ(:ult cohunn l_(,havior is _, direct response to the axial load;

however, in contrast to the case of unifi.n'nl teml_erature, different layers of the material

through the thickness creep/relax at different rates in dependence on the local temperature.

In view of the previous experience with buckling solutions involving viscoelastic material

behavior there is little expectation that this l_roblem can be sohed in "closed form" and

we therefore address the solution numerically.

Before delineating that devclol)ment we ccmm_.nt (m tile definition of "failure" in the

present context. As ()bsel'ved in .Minah('n and I,:nauss (1992), the failure of a. viscoelastic

colulnn approaches instal)ility ow:'r p()tentially \cry long time scales. While any load level

above that corresponding to the rela.xatioIl lnc)duhls will result in loss of stability at infinite

time, it may require potentially very long tinlc,S to attain deflections that are unacceptable

from an engineering point of view. We thus define a 'design-life" which is that time

required for the colunm to achieve a prescrib_'d "'critical" displacement. As in previous

work we arbitrarily choose this deflection as about 2.5 times the column thickness. 4 With

this concept in mind we model a cohmm 500 mm in length and 6.35 mm thick having the

thermoviscoelastic properties of PMMA as discussed above, ])tit the thermal expansion

characteristics of a ('arl_on-el)_)xy comp()site a = 3 x 10-'i/°C as reported in [Tsai and

Hahn].

The evalua.tion of equations (S). (37). and (39, is ac(:<mal_lished numerically under the

assumption that a OllC-terln ('xpansion c)f (51 with (6.46) ix sufficient, for our purposes. An

outline of the nulnerical 1)lOC¢'(lure is sumnmrized in tile A1)pendix.

For reference purposes it is prudent to r(:'('ord the lifetimes at a constant temperature

of 100°C as shown in figure 10 [Minahen and I,:na.uss (1992)]: As demonstrated in that

reference, the relaxation m(_dulus provides a g(_c_(I engineering estimate for this relation if

propel' account is t.al¢('n of a hcnizontal shift ahm_; t.h(' h)g-time axis of approximately one

decade, which is, how,,ver, a flmction c)f the' initial cc,lunm imperfection.

Because in al)plicati(ms _f hig;h-sl_eed trmlsl)(_rts _ae Sulfm', _ of the structure is likely to be

•1 It has been shown in Minahell and I_:mms., t 1992) that for this deflection magnitude

the current linearized fl:)rlnulation is a(lequat(, _,ml that the kinematically non-linear for-

nmla.tion is not requir(-,(l. The value 2.5 is. in r_'ality, a value of 2.4 in the earlier work

which incorporated fa('t(_l's arising out _f a (lim(,nsional conversion in connection with the

experinmntal w(_l'k r(' l_()l'ted t 1, u'e.
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maintained at a constant,t,cmperat.ure,wec_msidm"herealso the casewhenone side of the

column is kept at 30°C; the other side is exposed t.o a temperature varying between this

value and 120°C, so that one surfa.ce experiences the extreme conditions of being above the

glass transition tempera.ture. The results are delineated in figure 20. It is clear that with

increasing thermal gra.dient across the cohmm its life decreases rapidly; this is the result

of both the increase in the bowing induced by the thermal gl'adient ("initial imperfec-

tion") and the thermoviscoelastic acceleratiolJ associated with the increased temperature.

However, while uniformly increasing teml)erarurcs allow a. time-temperature trade-off in

the form of a simple shifting c_f the failure craves along the logarithmic time axis, that is

no longer even approximately the case. In fact. it in difficult to make the case that the

isothermal response provides a generally conservative estimate of the failure times.

Observing the effect of heating cme side of the colunm to above the glass transition tem-

perature while keeping the c_ther one at 30°C we see that the life of the column has been

decreased by about five orders of mag;nitude 1,,lative to the isothermal 30°C case. This

result is readily underst¢_cM if one, recognizes theft in addition to the large time-accelerating

effect of high temperntures 1,¢.1¢_wthe ,e;las_ tr_,Lsition the stiffness of the polymer has vir-

tually disappeared fl_r tc,mp¢.tatures _1)¢_v¢. 110°C so that the cohmm has effectively "lost
thickness."

5. Conclusion

The evolution of unstable lateral (lefl:nmat ions in a therlnoviscoelastic colunm has been in-

vestigated under the conditions of cyclic loading with synchronous temperature excursions,

as well as time-invariant, l_ading whih' subject to a transverse temperature gradient. Sta-

bility analysis ill the cyclic lcmding case indicat_.s that, while such loading under isothermal

conditions leads to stable l_mg-term defle¢ti_ms a.t loads greater than the rubbery buck-

ling load (and therefcn'_' the. lcnlg-t.c'rm st_,l_ilitv limit t'cn" constant loading), the addition

of temperature cycling c_n induce u:t_tal_lc 1ca_:e;-term deflection in cases with otherwise

subcritical load levels, even with relatively small temperature changes. Evaluation of the

behavior of a material with a realistic time-lcspcn_se spectrum as represented by that of

PMMA leads to the conclusion that tht' em_,lope of deflections of a. realistic material

under cyclic loading can l_e approxim_ted I_v the l'espcmse to constant loading when an

appropriate equivalent l()ad m)rmalizati(m is n>ecl.

While it. al>peal's difficult t_ r_,c_,e;niz,, a <_'l_'l_l scaling princess for the time-dependent

response under vm'i_ms therm;d gr;,di,.nrs, it is l_ssible r_ give seine general guidelines or

rough estimates t'_t b_mn_lin_ fnihnc l_'-lUn>,'. T_ see this. \re plot in figure 21 the responses

for the different gradients fr_)m figm_' 20. lint time-shifted by the average temperature

across the cohunn. The s()lid curv_' ill that f-igulc represents the failure time for the column

at the uniform reference t.emlneraturc I30°C. and in shal)C' equal to the relaxation modulus

of figure 10). Thus, if the gradients wcrc small, all curw_s would inearly) collapse into the

single (solid) curw'. One nc_tcs clearly that fir: loads al)m'e 90(X of the "'glassy buckling

T



loa.d," all failures ai. _,l_,vatc_[ teml,crntutcs c_ccur sooner by several orders of magnitude

tha.n a.t a reference stilt.(, corr_,sponding to the a.verage temperature. Thus, the use of

an average teml)er;iture fin' estima.ting the time response in the presence of temperature

gradients provides a massivly non-conserv_tivc failure time. 5 On the other hand, it is

also clear that assmning the faihu'e 1)ehavior for a structure exposed to the maximum

temperature provides an extremely conservative estimate of its failure response, but one

that may be usefill ii_l initial design estim;,ti_m.

This study has bc('n ('(m(htct_,_l c_n n m_,crc,scopic level, but a last word concerning compar-

ison to the local fiber buckling case is in c_rder. Indeed the results should be applicable in

some sense to localized 1,hcncmlenn, for. whilc' the boundary conditions differ, the essential

aspects of the time-dependence and sul)sequent response do not. It should be noted that

the "initial imperfection" used in the gradient, problem is entirely due to the thermoelastic

expansion of the material, and. nssunline; _, ln_sitive c(_e_cient, this will always result in

the outside of the "bowing" b_'ing the hc_t side of the column, and the hot (accelerated

time-response) side theref_n'(, tending t.o In, in tension. However. if a. specific case arises

where the heating is C_ml)lc_l with S()lll(, tI'IIllsV('I'S_' loading such that this tendency is over-

come and the bowing reverses, cndin,< Ul_ with the hot side in compression, the local fiber

buckling/crimping 1)(,c()nlcs _ mlwh m(n,' criticnl issue, due t.{) the decreasing local stiff-

ness. In t.h_" ma.i_nity c_t c_,s_.s likc,lv t_ l_e _'nc,,untc'ved in 1,ml-lif'e application, however, the

"hot-side-out ' asSUml)ti<nl is aclc.quatc.
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curves ha.re all been shif't_'d al(mg the tim,' _xis in accordance wit!l the time-temperature

reduction accordin.g t_, the' average t.Clnl)(Untutc'.
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Appendix: Numerical Procedure

The results in sccti,m 4.2 arc ol)tained by s,,lving equation (8) for A(t). (8), however,

contains 7_(t), which is given by equa.ticm (37). (37) ill turn contains cgu0/cgx, which must

be determined fl'om equation (39). A sequence thus evolves for the determination of A(t):

for each time step, (39) is solved for Ou.,,/Ox, which allows 7_(t) to be determined from (37).

(8) can then be solw_d for A(t). This sequence is carried out in a computer program which,

after initializing matorial constants (Prony tcruls al?.d _,VLF constants) and geometric and

loa.ding paranleters, executes a time loop. Tho time loop contains three sections which at

each time step solve for 0u0/0,r, n.(t), and .4(t). respectively.

While (37) requires _mly simple munc_rica.1 intogration, (8) and (39) are implicit equations

which are solved usin._ it Nmvt_)n-l'/al>hscm al>l)r(mch. (Note that a similar routine is ex-

ecuted for section 3. "). cxc'ept normalizat.ions.) A special recursive relation is defined in

order to facilitate time-stepping without having to preserve previous values of parameters

for the convolution. Tho samo lnethodoh_gy is used to soh'e both (8) and (39); here we only

give the details fl_r th,. soluticm of (S), trustil_:2; that the analogy for (39) will be apparent

[note that the results ,,f' sccti_m 3.2 are obtainod by an essentially identical procedure,

except fc,r tho use eft' rho n_nmalizaticms giv¢'l_ in (9)]. \Ve recast (S) in ttiemann form and
define the functicm

F(t_= -7 ,[:-'_(t)] [:-',(0+)]A(0+)E(z,

L' 0 }+. + E(z., - ,_)_ {[_:- ,,(_)].4(_)} ,l_ dz

-P [_4(t) + B].

which for F(t) = 0 sohcs (S). This functi_nt is discretized at a sequence of distinct times

t,. a.nd with rcsp¢,ct t_ " as

F(t,.)-£.

2 q

I

+ EE(:i't' -- re_ t)_

1=1

-P [_-tct,_ + B].

(

,,( t,. )] _ : .4( (}+)E( =,. 7t,.)

[:, - ,(t., )].4(_j)} ,At
,_At Az
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Using (15) for E(z,t), there follows

F,. = T zi -,(t,.)] .-i.4(0 +) Ej..e-O{:,, t"
_= I k'=0

±± }\ .

+ &.e-_ '"-'_-'},_x{[-i -,_(tj)].4(_j)} Az
j= 1 k=0

-P [A(_,./+ B].

Define

so tha.t

I"

j= I

,_ ,.i':,,{,,-,,-,,&{[_ _,(,.,)]._t(tj/}

F,.= -7 .:,-,_.(¢,.)] :,-4(0 +) Eke---
i:1 /,'=0

" }+ _ c'):_ ,",: - P [.4(_,./+ B].
/,={I

\.k_
_('-i } tr

Upon isola.ting, t.ho t,'rm t'{n .i = r f'r{ml the sm'ics for '-',.F't"i{me finds

G)7" = E'a,'---

F--J

j= i

__ c_'/.{ ,

\,

-.:'A{[:, -,,{_, )].4{t,.)}

__k._

E_,, ,.,:,,{'"-"-' },_x{[.:,- "{_.i }].4(_j)}

\

+{ ...... ,' E_,.{'

t:l

"z--__xt
....,, ,',{[.:,-,,{t,)].4{_,.)}

t'--[

2x-{I,._ _-t,_ L} k.":,' {[:,- ,,{_j }].4{_j)}

,k,i
and the sum is n{}w {,{ilud t.o tl,, 1}ro\'iolts valm, <}I G_£". i.e.. G,._ l so that we may write

G))'=E,.e .-:,, A{[.:,-,,{t,.)lA{t,.)}

This recursivo l{'lati{}n ,lh}ws .-,{}lut.i{}l, {}f"th{' {'(iuati{}n at su{'cessive time steps without

ha.ring t{} rct.aiu s{}htti{}ns f'{n all 1}ri{}r rilu{,s. \V{, can als{} calculate

(.) IE'_ 77, 2 q \.

t: I _={1
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Then, using the Newton-Ilaphson method, where A' is tile current estimate for A and A"

is the upda.ted value,

A" = A' + ,__SA

F,.(A") =F,.(.4' + ,__NA)

=F,(.4') + OF,.(.4')/x.4 + ...
/).4

We wish to find F,. = 0, so

o = F,.(.4') + 0_(-4')&.4+.. "
0.4

Therefore we al_proximate:

a-_.-[ --

F,.I.4')

OF,/O.4

2:3



Figure Captions

Figure 1: Viscoelastic column under axial loading and reference frame
definition.

Figure 2: Synchronous load and thermal history.

Figure 3: Response curve for growth of buckling deflection under constant

load and isothermal conditions [see Minahen and Knauss].

Figure 4: Illustration of piece wise construction of response under cyclic
"square" loading.

Figure 5: Response of column (standard linear solid) under isothermal, cyclic
loading for p < Pcr

Figure 6: Response of column (standard linear solid) under isothermal, cyclic
loading for p = Pcr

Figure 7: Response of column (standard linear solid) under isothermal, cyclic

loading for p > Pcr

Figure 8: Time-temperature shift factor for PMMA, also used for exemplary
standard linear solid.

Figure 9: Response of the standard linear solid for the same (stable) load level

as in Figure 5, but now with a load-synchronous thermal excursion
added.

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Relaxation Modulus for PMMA. The shape of this curve is the same
as that for the time to failure of an isothermal column under constant

load [See Minahen and Knauss. The upper portion of this curve is

also the same as the solid curves in figures 20 and 21].

Response characteristics of a column possessing PMMA properties

under isothermal conditions and with load-synchronous heating.

Comparison of response under steady load (dashed line,

p=po(l+roo)/2)) and cyclical loading (solid curve, p=roo) according

to equation 36 for PMMA properties and p < Pcr

Comparison of response under steady load (dashed line,

p=po(l+roo)/2)) and cyclical loading (solid curve, p=roo) according to

equation 36 for PMMA properties and p = Pcr
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Figure 14: Comparison of response under steady load (dashed line,

p=po(l+roo)/2)) and cyclical loading (solid curve, p=roo) according to

equation 36 for PMMA properties and p > Pcr

Figure 15: Comparison of response under steady load (solid line) and cyclical

loading (dashed curve) according to equation 36 for the standard

linear solid and p < pcr

Figure 16: Comparison of response under steady load (solid line) and cyclical

loading (dashed curve) according to equation 36 for the standard

linear solid and p = Pcr

Figure 17: Comparison of response under steady load (solid line) and cyclical

loading (dashed curve) according to equation 36 for the standard

linear solid and p > pcr

Figure 18: Configuration of the column under a thermal gradient.

Figure 19: Example of critical loading. The solid and dashed curves represent

responses of a standard linear solid to loads which are, respectively,

1% above and below the long term critical value.

Figure 20: Failure time (= design life) versus normalized column load P/Eg for

various thermal gradients across the column. One surface of the

column is held at 30°C while the other is kept at a higher temperature

by the amounts indicated. Note that the solid curve has the shape of

the upper portion of the curve in Figure 10.

Figure 21: The responses of figure 20 plotted with the time axis adjusted by

time-temperature superposition with respect to the average column

temperature. In this plot small or zero gradients would make all

curves coincide (approximately) with the solid curve.
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